Bacterium organizes hierarchical amorphous structure in microbial cellulose.
نویسندگان
چکیده
A pellicle, a gel film of microbial cellulose, is a supermolecular system containing 99% of water by weight, which is closely related to an amorphous structure in it. Using ultra-small-angle neutron scattering, in order to cover over a wide range of length scales from nm to 10 microm, we examined the hierarchical amorphous structure in the microbial cellulose, which is synthesized by a bacterium (Acetobacter xylinum). The microbial cellulose swollen by water shows small-angle scattering that obeys a power law q -behavior according to q -alpha as a function of the magnitude of the scattering vector q . The power law, determined by scattering, is attributed to a mass fractal due to the distribution of the center of mass for the crystallite (microfibril) in amorphous cellulose swollen by water. As q increases, alpha takes the values of 2.5, 1, and 2.35, corresponding, respectively, to a gel network composed of bundles, a bundle composed of cellulose ribbons, and concentration fluctuations in a bundle. From the mass fractal q -behavior and its length scale limits, we evaluated a volume fraction of crystallite in microbial cellulose. It was found that 90% of the cellulose bundle is occupied by amorphous cellulose containing water.
منابع مشابه
Investigation on cross-linked nanomicrobial cellulose properties as modern wound dressing
Background: Nanomicrobial cellulose is an important biopolymer with a three-dimensional structure that is produced by some microorganisms and has been widely used in medicine. One of the unique properties of microbial cellulose is its very high water absorption, which can be used to produce modern wound dressings. But after drying, it’s three-dimensional structure collapses and the amount of wa...
متن کاملPreparation of cellulose nanoparticle from cinnamon
The preparation of cellulose nanostructures is considered in this paper. Cellulose nanoparticles(nano cellulose) were extracted from cinnamon for the first time. The chemically-induceddestruction strategy based on controlled strong acid hydrolysis treatment was used for dissolutionof lignin and fragmentation of cellulose to nano sized structure. The products werecharacterized by scanning electr...
متن کاملConstruction of cellulose-utilizing Escherichia coli based on a secretable cellulase
BACKGROUND The microbial conversion of plant biomass into value added products is an attractive option to address the impacts of petroleum dependency. The Gram-negative bacterium Escherichia coli is commonly used as host for the industrial production of various chemical products with a variety of sugars as carbon sources. However, this strain neither produces endogenous cellulose degradation en...
متن کاملStudies of the Molecular Interaction Between Cellulose and Lignin as a Model for the Hierarchical Structure of Wood
Wood and dietary fiber products all belong to a class of biomolecular composites that are rich in cellulose and lignin. The interaction between cellulose and lignin determines such properties as mechanical strength (wood); creep, durability and aging; cellulose purity (pulp); and digestibility (nutrients). The understanding of the interaction between cellulose and lignin can be approached from ...
متن کاملThe effect of nanoparticles and organic acids on bacterial nano- cellulose synthesis, crystalline structure and water holding capacity
Bacterial cellulose is a biological polymer with a variety of extraordinary properties which make it a functional material for different industrial fields. This work aimed at monitoring the effects of three different organic acids and nanoparticles on the production, water holding capacity and structural characteristics of bacterial cellulose. Different concentrations of organic acids and nanop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The European physical journal. E, Soft matter
دوره 26 1-2 شماره
صفحات -
تاریخ انتشار 2008